Perron-Frobenius Theorems

Weikai Chen, 2021/03/16

This is a lecture note for Marxian Economic Theory, a course at Renmin University of China.

In this note, we will discuss the Perron-Frobenius Theorem, which is one of the most powerful tools on nonnegative/positive matrices and the workhorse in mathematical Marxian economics. I assume that the reader are familiar with basic linear algebra.

This Note is written in Pluto Notebook, a reactive notebook for Julia.

Nonnegative and Positive Matrices

Notations

In this note we use the following notations:

- A matrix is positive, $A > 0$, if and only if $a_{ij} > 0$ for all i, j.
- A matrix is semi-positive, $A \geq 0$, if and only if $a_{ij} \geq 0$ for all i, j and $A \neq 0$.
- A matrix $A \geq 0$ if it is nonnegative.

As a vector can be taken as a special matrix ($1 \times k$ or $k \times 1$ matrix), the above notations apply to vectors.

About the dimensions: By default, a matrix is $n \times n$ and vector $n \times n$ or determined by the context. For example, the vector v in vA is by default a row vector, while x is a column vector in Ax.

Example 1: Linear economy (A, ℓ)

Nonnegative matrices arise in many fields. In Marxian Economic Theory, it is used in the model of linear economy $E(A, \ell)$.

Assume that there are n goods in the economy, and each column of the matrix A represents a production process.

$$a^j \oplus \ell_j \mapsto e_j$$
Specifically, a_{ij} is the amount of good i used in the production of 1-unit of good j. The row vector ℓ is the direct labor input, i.e., ℓ_j is the labor required in the production of 1-unit of good j.

The nonnegative matrix A is called an input-output matrix. Usually, we assume the input-output matrix A is productive and indecomposable, which will be discussed later.

Example 2: Markov Chain

Suppose that there are n states, and the probability of jumping from state j to state i is given by $p_{ij} \geq 0$, then

$$\sum_{i=1}^{n} p_{ij} = 1, \text{ for all } j$$

The nonnegative matrix $P = (p_{ij})$ is called a stochastic matrix.

Indecomposable Matrices

A square matrix A is decomposable if it can be reorganized by performing the same permutation on the rows and the columns into the form of

$$\begin{bmatrix}
A_{11} & A_{12} \\
0 & A_{22}
\end{bmatrix}$$

where A_{11} and A_{22} are square.

For example, if one column of the matrix A is zero vector, say $a^1 = 0$, then A is decomposable.

An equivalent definition: if the set $\{1, \ldots, n\}$ can be partitioned into two disjoint subsets I and J such that $a_{ij} = 0$ for all $i \in I$, $j \in J$, then A is decomposable.

A square matrix A is said to be indecomposable if it is not decomposable. In the context of Markov chains, it is also called irreducible.

Note that if a nonnegative matrix A is indecomposable, then it must be semi-positive, $A \geq 0$.

If A is indecomposable, the so is the transpose A'.

Some Preliminary Properties

- If $A > 0$, $x \geq 0$, then $Ax > 0$.
- If $A \geq 0$ is indecomposable, $x \geq 0$, then $Ax \geq 0$. For if $Ax = \sum_{i}^{n} x_i a^i = 0$, and $x_i > 0$, then $a^i = 0$ and A is decomposable.
Eigenvalues and Eigenvectors of Nonnegative Matrices

The Perron-Frobenius Theorem

Theorem

Let $A \geq 0$ be indecomposable, then

1. A has a positive eigenvalue $\lambda(A) > 0$ associated with a positive eigenvector $v > 0$

 $$Av = \lambda(A)v$$

2. If $u \geq 0$ is an eigenvector, then it has eigenvalue $\lambda(A)$, and $u > 0$ is a multiple of v.

3. If α is any eigenvalue of A, then $|\alpha| < \lambda(A)$.

4. If $A \geq B \geq 0$ then $\lambda(A) > \lambda(B)$. Moreover, if $A \geq B \geq 0$ and $\lambda(B) = \lambda(A)$, then $B = A$.

Statement (1) and (2) mean that A processes a unique nonnegative eigenvector (up to a scalar), and its associated eigenvalue is positive. We call this unique eigenvalue $\lambda(A)$ the Frobenius root of the nonnegative matrix A.

Then (3) means that the Frobenius root is the largest eigenvalue, and (4) implies that the Frobenius root is an increasing and continuous function of the matrix.

If $A \geq 0$ without the assumption of indecomposability, then $\lambda(A) \geq 0$ and $v \geq 0$. Similarly, (3) and (4) hold with weak inequality.

Moreover, if $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ where A_{11} is square. Consider $B = \begin{bmatrix} A_{11} & 0 \\ 0 & 0 \end{bmatrix}$ then

$$\lambda(A_{11}) = \lambda(B) < \lambda(A)$$

There are many different ways to prove this theorem. I present one of them using the fixed point theorem in the last section. Next let's first look at some examples.

- begin
 - import Pkg
 - Pkg.add("LinearAlgebra")
 - Pkg.add("Plots")
 - Pkg.add("LaTeXStrings")
 - using LinearAlgebra, Plots, LaTeXStrings
 - end
\[A = 2 \times 2 \text{ Array}\{\text{Float64,}2\}: \]
\[
\begin{bmatrix}
0.5 & 0.2 \\
0.1 & 0.6
\end{bmatrix}
\]

\[B = 2 \times 2 \text{ Array}\{\text{Float64,}2\}: \]
\[
\begin{bmatrix}
0.4 & 0.2 \\
0.1 & 0.6
\end{bmatrix}
\]

Let \(A \) be nonnegative, indecomposable, and \(\lambda(A) \) its Frobenius root, we have
• For an $x \geq 0$,

\[Ax \leq sx \Rightarrow \lambda(A) \leq s \]
\[Ax \geq sx \Rightarrow \lambda(A) \geq s \]

• For an $x > 0$,

\[Ax \leq sx \Rightarrow \lambda(A) < s \]
\[Ax \geq sx \Rightarrow \lambda(A) > s \]

The proofs of these four statements are identical. The readers are encouraged the prove them as an exercise. Below we present only the proof of the last one.

Hint

Let $v > 0$ be a eigenvector of the matrix A' associated with $\lambda(A') = \lambda(A)$:

\[A'v = \lambda(A)v \]

then $v'x > 0$ with $x \geq 0$. Since $Ax \geq sx$, then

\[v'Ax > sv'x \Rightarrow \lambda(A)v'x > sv'x \Rightarrow \lambda(A) > s. \]

If A is nonnegative, without the assumption of indecomposability, then we have

• For an $x > 0$,

\[Ax \leq sx \Rightarrow \lambda(A) \leq s \]
\[Ax \geq sx \Rightarrow \lambda(A) \geq s \]

• For an $x \geq 0$,

\[Ax < sx \Rightarrow \lambda(A) < s \]
\[Ax > sx \Rightarrow \lambda(A) > s \]

Max-min and Min-max Characterization
Let A be nonnegative, indecomposable and $\lambda(A)$ its Frobenius root. It is immediately from the above observations that

- if $w > 0$, $Aw \leq \lambda(A)w$, then $Aw = \lambda(A)w$
- if $w > 0$, $Aw \geq \lambda(A)w$, then $Aw = \lambda(A)w$

In other words, it is impossible to have

$$Aw \leq \lambda(A)w$$

or

$$Aw \geq \lambda(A)w$$

for any $w > 0$. Then, $\lambda(A)$ cannot be the minimum nor the maximum of the ratio $\frac{(Aw)_i}{w_i}$.

Therefore, we have the following theorem

Theorem

Let A be nonnegative, indecomposable and $\lambda(A)$ its Frobenius root. Let $w > 0$, then either

$$\min_i \frac{(Aw)_i}{w_i} < \lambda(A) < \max_i \frac{(Aw)_i}{w_i},$$

or

$$\min_i \frac{(Aw)_i}{w_i} = \lambda(A) = \max_i \frac{(Aw)_i}{w_i}.$$

For example, consider the $w > 0$ above, then

- the minimum of $\frac{(Aw)_i}{w_i}$ is 0.64;
- the maximum of $\frac{(Aw)_i}{w_i}$ is 1.0;
- while $\lambda(A) = 0.7$ is in between.
Productive Matrix

A nonnegative square matrix is said to be productive if there exists \(x \geq 0 \) such that

\[
x - Ax \geq 0
\]

Exercise.

Let \(A \geq 0 \) be indecomposable. Show that \(A \) is productive if and only if \(\lambda(A) < 1 \).

Hint

If \(A \) is productive, then there exists \(x \geq 0 \) such that \(Ax \leq x \). Therefore, \(\lambda(A) < 1 \).

If \(\lambda(A) < 1 \), then we have \(v > 0 \) and \(Av = \lambda v < v \), i.e., \(v - Av > 0 \), therefore, \(A \) is productive.

Theorem

Let \(A \geq 0 \) be indecomposable, then \(s > \lambda(A) \) if and only if \((sI - A)^{-1} > 0 \).

Proof

By the Perron-Frobenius Theorem, \(\lambda(A) \) is the largest eigenvalue of \(A \), i.e., the largest root of the equation

\[
\det(\lambda I - A) = 0
\]

Then \(s > \lambda(A) \) is not a root, i.e., \(\det(sI - A) \neq 0 \). Therefore, \((I - A)^{-1} \) exists.

Next, we show that \((sI - A)^{-1} > 0 \). It is sufficient to show that \(z = (sI - A)^{-1}y > 0 \) for any \(y \geq 0 \). Suppose that \(z \) has some negative components,

\[
z = \begin{bmatrix} -x_1 \\ x_2 \end{bmatrix}
\]

where \(x_1 > 0 \) and \(x_2 \geq 0 \), then

\[
\begin{bmatrix}
sI - A_{11} & -A_{12} \\
-A_{21} & sI - A_{22}
\end{bmatrix}
\begin{bmatrix}
-x_1 \\
x_2
\end{bmatrix}
= y
\]
implies \(-(sI - A_{11})x_1 - A_{12}x_2 \geq 0\). Then \((sI - A_{11})x_1 \geq 0\) and therefore \(\lambda(A_{11}) \geq s\), a contradiction to the fact that \(\lambda(A_{11}) \leq \lambda(A) < s\). Therefore, we have \(z \geq 0\).

Suppose that \(z\) has zero components, then
\[
\begin{bmatrix}
 sI - A_{11} & -A_{12} \\
 -A_{21} & sI - A_{22}
\end{bmatrix}
\begin{bmatrix}
 0 \\
 x_2
\end{bmatrix}
= y
\]
where \(x_2 > 0\). Then
\[-A_{12}x_2 \geq 0 \Rightarrow A_{12}x_2 = 0\]
and then \(A_{12} = 0\) since \(x_2 > 0\), violating the indecomposability of \(A\). Therefore, \(z > 0\).

Applying the above theorem to the case with \(\lambda(A) < 1\) when \(A\) is productive, we have

Take-Home Message

If a nonnegative matrix \(A\) is indecomposable and productive, then \((I - A)^{-1} > 0\).

Moreover,
\[
(I - A)^{-1} = I + A + A^2 + \cdots = \sum_{k=0}^{\infty} A^k
\]
holds when \(\lambda(A) < 1\), as a generalization of
\[
\frac{1}{1 - q} = 1 + q^2 + \cdots = \sum_{k=0}^{\infty} q^k, \quad \text{for } |q| < 1
\]

Appendix: The proof of the Perron-Frobenius Theorem

Theorem

Let \(A \geq 0\) be indecomposable, then

1. \(A\) has a positive eigenvalue \(\lambda(A) > 0\) associated with a positive eigenvector \(v > 0\)
\[Av = \lambda(A)v \]

(2) If \(u \geq 0 \) is an eigenvector, then it has eigenvalue \(\lambda(A) \), and \(u > 0 \) is a multiple of \(v \).

(3) If \(\alpha \) is any eigenvalue of \(A \), then \(|\alpha| < \lambda(A) \).

(4) If \(A \geq B \geq 0 \) then \(\lambda(A) > \lambda(B) \). Moreover, if \(A \geq B \geq 0 \) and \(\lambda(B) = \lambda(A) \), then \(B = A \).

We first establish (1) using the following fixed point theorem.

Let \(\Delta = \{ x \geq 0 \mid x \in \mathbb{R}^n \text{ and } \|x\| = 1 \} \), and \(f : \Delta \to \Delta \) be a continous function. The Brouwer fixed point theorem ensures that \(f \) has a fixed point, i.e., there exists \(x_0 \in \Delta \) such that \(f(x_0) = x_0 \).

For a nonnegative and indecomposable matrix \(A \), we first show that there exist a positive eigenvalue \(\lambda > 0 \) such that

\[Av = \lambda v \]

Since \(A \) is indecomposable, for any \(x \geq 0 \), we have \(Ax \geq 0 \), then \(\|Ax\| > 0 \). Define \(T : \Delta \to \Delta \) by

\[T(x) = \frac{Ax}{\|Ax\|}, \forall x \in \Delta \]

then \(T \) is continous and there exists a fixed point \(v \in \Delta \) such that

\[T(v) = \frac{Av}{\|Av\|} = v \Rightarrow Av = \lambda v \]

where \(\lambda = \|Av\| > 0 \).
Next, we show that \(v \) must be positive by the proof of contradiction. Without loss of generality, suppose on the contrary that \(v \) has some zero components,

\[
v = \begin{bmatrix} v_1 \\ 0 \end{bmatrix}
\]

where \(v_1 > 0 \). Then \(Av = \lambda v \) yields

\[
\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ 0 \end{bmatrix} = \begin{bmatrix} \lambda v_1 \\ 0 \end{bmatrix}
\]

Thus \(A_{21}v_1 = 0 \), so \(A_{21} = 0 \), violating the indecomposability of \(A \).
For (2), let \(w > 0 \) be an eigenvector of \(A' \) associated with \(\lambda(A') = \lambda(A) \). Suppose that \(Au = \lambda_u u \), then

\[
\lambda_u w' u = w' Au = \lambda(A) w' u
\]

so \(\lambda_u = \lambda(A) \) since \(w' u > 0 \). Then \(u > 0 \) by the same argument (showing \(v > 0 \)) above.

Suppose that \(u \) is not a multiple of \(v \), then there exist \(k \in \mathbb{R} \) such that \(u + kv \geq 0 \) has zero component. Note that \(u + kv \) is an eigenvector associated with \(\lambda(A) \), so \(u + kv > 0 \) contradicted.